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Discrete Gradients in Discrete Classical Mechanics 

L. R e n n a  ~ 

Received March 8, 1987 

A simple model of discrete classical mechanics is given where, starting from the 
continuous Hamilton equations, discrete equations of motion are established 
together with a proper discrete gradient definition. The conservation laws of the 
total discrete momentum, angular momentum, and energy are demonstrated. 

1. I N T R O D U C T I O N  

The problem of the motion of complex physical material systems 
(formed by more than two particles) is usually solved by means of numerical 
calculations. In continuous classical mechanics the dynamical behavior of  
the material systems is determined by continuous dynamical variables which 
are solutions of  the differential equations of  the motion. The equations of  
motion are approximated with difference equations and the dynamical 
variables with discrete functions of  the time. In the numerical representation 
of the evolution of the physical systems the fundamental  conservation laws 
are satisfied only approximately.  

In discrete mechanics, instead, the discrete equations of  motion retain, 
in general, the various symmetries and conservation laws. Therefore, discrete 
mechanics can ensure a significant improvement  in numerical efficiency and 
satisfactory results can be more easily achieved. 

Discrete classical mechanics differs from the continuous one in that 
the physical quantities and the dynamical variables are defined as discrete 
functions of  the discrete time tn, and one supposes that the equations of  
motion are convenient difference equations, which, in the limit t n + l - t ,  = 
At,--> 0, reduce to the corresponding continuous differential equations. At 
each discrete time instant t,, the fundamental  conservation laws must be 
automatically satisfied. Hence, discrete equations_must lead to the same 

tDipartimento di Fisica dell'Universita'-73100 Lecce, Italy, and Istituto Nazionale di Fisica 
Nucleate, Sezione di Bari, Italy. 

685 
0020-7748/87/0700-0685505.00/0 ~ 1987 Plenum Publishing Corporation 



686 Renna 

laws of continuous mechanics. This suggests that the discrete equations of 
motion have a formal analogy with the known equations of classical 
mechanics. 

These considerations pose a limit on the possibility of building discrete 
mechanics models. 

Discrete classical mechanics finds its motivations in the simplicity of 
the algebraic structure of the equations of motion, whose solution sometimes 
demands only simple operations of an arithmetical nature. The difficulty 
of obtaining analytical solutions in some cases is largely compensated by 
the high computability. As pointed out above, complicated continuous 
dynamical systems are frequently solved numerically by discretizing them; 
in discrete mechanics the numerical solutions are strictly related to the 
continuous solutions and the validity of the conservation laws can avoid 
numerical instabilities. In additions, discrete mechanics allows one to gain 
insight into the understanding of the physical problem considered, and 
finds applications in many fields of physics. 

In this paper we limit ourselves to a simple model of discrete classical 
mechanics. Our approach is based on a correspondence between analytical 
and discrete Hamilton equations. The equations of motion are hence 
obtained by defining a convenient discrete gradient in analogy with the 
continuous one. Our results are general enough and impose no strict limita- 
tions on the expression of the force between the interacting particles. 

Recently, Lee (1983) has proposed a very interesting new formulation 
of mechanics where time is considered as a discrete dynamical variable and 
the usual continuous mechanics appears as an al~proximation. His discrete 
mechanics finds its greatest applications in quantum and relativistic 
mechanics and may also be regarded as a possible way for the elimination 
of the divergence difficulties of quantum field theory (Friedberg and Lee, 
1983). The consequences in quantum mechanics of ~/Lagrangian different 
from that used by Lee are discussed by D'Innocenzo et al. (1984). Lee's 
discrete mechanics is conceptually different from the model proposed in 
this work, where the time remains a parameter, although discrete. 

Another model of discrete mechanics, based on the discretization of 
the forces between the interacting particles has been proposed (Greenspan, 
1974). In this latter model, for each physical system discrete forces were 
chosen in a suitable way in order to achieve the validity of the conservation 
laws, but a general procedure for finding them was not given. On the 
contrary, in our model, discrete force expressions arise in a quite natural 
way from the discrete Hamilton equations, independently of the specific 
kind of physical system considered. 

In Section 2 the discrete equations of motion are established by a 
formal analogy with the corresponding continuous equations. In Section 3 
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the generalized discrete gradients are defined in a convenient way and are 
used in Section 4 in order to demonstrate the validity of  the conservation 
laws of the total momentum, energy, and angular momentum. Finally, in 
Section 5, the foregoing results are applicated to simple physical problems. 

2. DISCRETE EQUATIONS OF MOTION 

In continuous mechanics a dynamical system of k particles is described 
by a Hamiltonian H, and the position vector r u) of  the ith particle and its 
respective momentum p(n obey the Hamilton equations. In the most common 
cases, the total energy E = H, and if t does not appear explicitly in H, the 
energy E is conserved. The conservation law of a dynamical variable that 
does not depend on the time explicitly can be formulated in terms of Poisson 
brackets. Thus, if s is a constant of the motion, it must have the property 
[H, s] =0.  Namely, the Poisson bracket of a motion constant with the 
Hamiltonian vanishes. This is the usual classical approach to continuous 
mechanics (Landau and Lifshitz, 1969). 

In order to postulate the discrete equations of motion, we establish a 
correspondence between continuous and discrete variables and operators. 
The time is considered as a discrete parameter t,, and the continuous 
functions r(t)  and p(t) are thus replaced by the discrete quantities r~ = r(&) 
and p, = p(tn). Now, we can postulate the following correspondences: 

H - ~ H , = - H ( r ( , 1 ) ,  �9 �9 �9 r(f); P(,I), . ..,Pn(k), &) 
(1) 

0/0v--> 0/0vn 

where H.  is the discrete Hamiltonian and 0/av. is a discrete operator (it 
will be defined in the following) analogous to the continuous gradient 
operator. 

We also postulate that the discrete equations of motion are 

and 

f(o = a H , / O p ( f ,  i = 1, . . . ,  k (2) 

% v.+1-v._Av. (4) 
t .+l - t .  A t .  

We now require that the conservation laws remain valid also in discrete 
mechanics. The validity of the discrete conservation laws will depend on 

p~O= _ O H ,  lOr~i), i =  1 , . . . ,  k (3) 

where the derivative with respect to the time of the discrete vector v, is 
defined as 
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the choice of  the discrete gradient. Thus, in analogy with the continuous 
case, we affirm that the energy of a physical system is a constant of  the 
motion if the discrete Hamiltonian H .  does not depend on the time 
explicitly; in the same way the discrete variable s. is a constant of  the 
motion if the discrete Poisson bracket 

wo, o]:  /0Ho oH. 
,=1 \Or~') 'Op~ ) 0 P ~ ' ) ' ~ /  (5) 

vanishes for every n. 

3. GENERALIZED DISCRETE GRADIENTS 

Let f ( r )  be a scalar function of the vector r. In the classical approach 
to differentiability the function f ( r )  is approximated around r by a linear 
function g(h) of  the increment h, 

f ( r +  h) - f ( r )  = g(h) + o(th[) (6) 

where 

g(h) = hf~(r) (7) 

and f~(r) is the directional derivative of  the function f at r with respect to 
the various vectors h. 

One defines the g r a d i e n t  of r as the unique g such that 

g(h) = g .  h (8) 

for all the vectors h. From (8) one has 

g(h) = h .  Vf(r)  

and from (7) 

f~(r) = g ( h ) /  h -- h . Vf(r)  

where h = h / h  is the versor in the h direction. 
As we have already said, we limit ourselves to scalar functions of  r, 

which depend only on r, and we begin by observing that the gradient of  
such functions is 

Vf(r)  = 2r Of~Or 2 (9) 

and therefore it has the direction of r. 
Now, in the attempt to define an analogue of the gradient for discrete 

functions, we require that it satisfies some requisites. In fact, the discrete 
gradient must have a formal analogy with the continuous gradient and must 
tend to the continuous one for Atn --> 0. Furthermore, it does lead to a discrete 
derivative in the one-dimensional case. 
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Based on these observations and looking to (9), we pose (this always 
can be done without any restrictions) 

f ( r +  h ) - f ( r )  -- G ( r +  h, r ) (2r+ h) .  h (10) 

from which it follows that 

f ( r  + h) - f ( r )  
G ( r + h , r ) =  (11) 

(2r+h)  �9 h 

Taking a term from the language of mathematical programming 
(Clarke, 1975; Rockafellar, 1983), we define 

Vhf = G ( r + h ,  r ) (2r+h)  (12) 

as the generalized discrete gradient. 
The discrete partial derivative is given by 

oxf = ~" V h f  (13) 

and i f f  is a function of  x only, it coincides with an incremental ratio, that 
is 

o~f(x) = A f = f ( x  + Ax) - - f (x)  (14) 
Ax AX 

For example, we have, from (14), 

OxX = 1, Oxx2= 2x + hx 

where hx = Ax. 
Since x = r .  ~, we can pose 

Vhx =Vh(r .  ~) = $  (15) 

and 

Vhx 2 = Vh(r" ~)2 = (2x + h .  ~)~ 

We notice that equation (15) can be written as 

Vh(r" X) = ~ .  Vhr 

Furthermore, we have in the continuum case 

Vr 2 = r .  V r + r . V r  

and in the discrete case 

Vhr 2 = 2r + h 

(16) 

(17) 

(18) 

(19) 
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This equation can be written as 

V h r 2 _ 2 r + h . v  r +  2 r + h  
2 h 2 " Vhr (20) 

which is the analogous discrete version of equation (18). 
Generalizing these results, the discrete gradient of the component of 

r along the direction of a dynamical variable p is assumed to be 

Vh(r-p) =�89 Vhr (21) 

that is, 
Vh(r" p) = (2p+u) /2  (22) 

where u is the increment of  the vector p. 
We observe that both h and u are determined by the discrete equations 

of  motion (2) and (3). 
From equation (16), which can be regarded as a discrete function 

f ( r .  ~), we have the general rule 

Vhf(r"  p) = Af( r .  p) . . , .  P) (23) A(--r .-p3 vh~r.  

Finally, we observe that equation (12) can also be written as 

2r + h Af(r) 
Vhf(r  ) = 2 ~ - -  Ar 2 (24) 

Thus, many discrete operations preserve a formal analogy with the 
continuous ones. 

4. CONSERVATION LAWS 

We have already defined the discrete motion equations. In order to 
solve them for a particular problem, we must express the coordinates and 
momenta in terms of the intial conditions, i.e., the initial values ro and Po 
at the time t = to. In general, this will require the solution of 2 N  difference 
equations for a system with N degrees of freedom. Bypassing, for the 
moment, this problem, we shall show that, in our model, when the corre- 
sponding continuum physical conditions of validity are satisfied, the con- 
servation laws of the total discrete energy, discrete momentum, and discrete 
angular momentum are automatically satisfied. 

The energy of the system is conserved if the discrete Hamiltonian Hn 
does not explicitly depend on tn. In fact, one has, utilizing equations (2) 
and (3), 

AH,_At, H,+,t.+, +-H"-o'H~+~t. . \ ~  =O,H~ (25) 
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Thus, if O,H. = 0, we obtain that the discrete energy is a motion constant 

H.+I = H.  (26) 

The total momentum of a system of k interacting particles 

k 
P.  = E p~i) (27) 

i=1 

is a motion constant if the Poisson bracket of the Hamiltonian and each of 
the components of P. is equal to zero, namely 

[H.,  P.x] = 0 (28) 

By using equation (5), we have from this condition 

,~1 ~" Or~ ')'OH" ̂ k F~.~ x = ,~, = 0 (29) 

which is satisfied if the internal discrete forces are Newtonian and the 
external resultant force is equal to zero. 

Finally, let us define the discrete angular momentum of a particle at 
the discrete time t. as 

L.  = r~ x p. (30) 

We demonstrate that 

[q~, L.~] = 0 (31) 

where ~0 is any scalar function of the discrete coordinates and momentum 
of  the particle and Lnz is the z component of the discrete angular momentum 
(30). Relation (31) is easily verified in continuous mechanics (Landau and 
Lifshitz, 1969). 

Now, ~o can only depend on the combinations r 2, p2 n and r . -  p. of the 
vectors r.  and p.. Thus, 

0~p A~o A~o p . + l + p .  
or. Ar ] ( r .+l+r . ) -~ A ( r . . p . )  2 (32) 

and 

By using 

8~o Acp Aq~ rn+~q-r~ (33) 
ap~ - (p~ + p~ + A(r . .  2 

L. z = r . x p . ' ~ = p .  •  = ~ •  (34) 
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we have 

O L ~  p . + l + p .  0 p . + l + p .  0 
z = _  �9 ( ~ x r . )  . . . .  

ar, 2 Or, 2 at ,  
(x.fi - y,~) 

=~• p"§ (35) 
2 

and 

OL, z = r.+l + r________~ = ~. (36) 
dO. 2 

By utilizing (32), (33), (35), and (36) one easily obtains after a little algebra 

[~, L,~] = a~ .  aLnz O~. 0L~.~= 0 (37) 
ap. at.  ar. ap. 

In the same manner one can demonstrate that the Poisson brackets of 
with the x and y components of L, are equal to zero. 

5. EXAMPLES 

Let us consider the discrete equations of motion (2) and (3) of a particle 
of mass m starting at the time to = 0 from ro with momentum Po and subject 
to the following potentials: 

1. V ( r ) -  0 (free particle) 
2. V(r) -- cer. ~ (constant force) 
3. V(r) = kr2/2 (harmonic oscillator) 
4. V(r)=c/r  (gravitational force) 

The discrete Hamiltonian is 

where 

We define [see equation (4)] 

H,  = T, + V, (38) 

T, =p~/2m (39) 

t .  r .+l  - r .  (40) 
t n  + 1 - -  t n 

and 

p. _ P.+l - P~ (41) 
t._l - tn 
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and assume equal time spacing At. = t.+ 1 - -  t. = e. The equations of  motion 
(2) and (3) thus became 

5 . 1 .  F r e e  P a r t i c l e  

r . + l - r ,  p . + l + p .  
- -  - - -  ( 4 2 )  

e 2 m  

P . + I - P .  OV. 
(43) 

e arn 

For a free particle of  mass m the potential V. is constant and one 
obtains from (43) and (42) 

and 

P. =Po (44) 

r .  = ro+ ( p o / m ) t .  (45) 

where t. = ne. 

5.2. Constant Force 

In this case 

V(r.)  = m a r . .  

and (42) and (43) become 

OH. p . + l + p ,  r . + l - r .  

op,, 2m e 

(46) 

(47) 

is conserved. 

the energy 

7". = ( p Z / 2 m )  - apoxt. - '  2.2 -I-~r?log t n 

t 2.2 
Vn = amXo + apoxt. -~mc~ t .  

(51) 
(52) 

E,, = T,, + V.  = p ~ / 2 m  + otmxo = Eo (53) 

Since 

O V . =  rna~=  P . + I - P .  (48) 
Or. e 

Thus, for the y and z components  we find the analogous one-dimensional 
equations of  (44) and (45), while for the x component  we obtain, with some 
algebra, 

P.x = Pox - m a t .  (49) 

x = X o + ( P o x / m ) t "  1 2 - ~ c e t .  (50) 
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5.3. Harmonic Oscillator 

Substituting Vn = k r ~ / 2  into equations (42) and (43), we obtain 

r.+l - r~ = ( e / 2 m ) ( p . + l  + p.) (54) 

P.+I -- P. = - l k e ( r . + l  + r . )  (55) 

We consider, for simplicity, a unique component of the coordinates 
and momenta, i.e., the x component. Equations (54) and (55) lead to 

x.+l  - 2 x .  + x . _ l  + �88 + 2x .  + Xn_l)  = 0 (56) 

P.+I.  - 2P.x +Pn- lx  +�88 q- 2P.x +P.- lx)  = 0 (57) 

where, as usual, 

o92= k / m  (58) 

By including the initial conditions, we find for equations (56) and (57), 
respectively, the solutions 

x, = Xo cos n ~ v + (poJogm)  sin n ~ v (59) 

p.~ = - x o w m  sin n ~ v + pox cos n ~ v (60) 

where 

1 O9E 

v = -e arcsin 1+ 1wZe2 (61) 

These results can be easily verified by substituting (59) and (60) into (56) 
and (57), respectively. 

Thus, the discrete energy 

2 2 

E. = p~ + V ( r . ) -  P----9-~ +*kr  2= Eo (62) 
2 m  - 2 m  2 o 

is conserved, while from (61) we see that the frequency of the discrete 
oscillator is different from the corresponding continuous frequency. For 
small time intervals, equation (61) reduces to 

v=og(1  c~ 
- 12 ] + ~  (63) 

Thus, v is less than w. 
These results have already been reported (D'Innocenzo et al., 1986), 

where the consequences, in classical and relativistic mechanics, of a 
Lagrangian different from that used by Lee (1983) are discussed. 
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5.4.  Grav i ta t iona l  Force  

In this case Vn = c /r~,  and near equation (42), from (43) we have 

P~+I - P.  rn+l + rn 
(64) r 

e rn+lrn(rn+l+rn) 

This result was already proposed (Greenspan, 1974) as a definition of 
the discrete gravitational force. 

The system formed by equations (42) and (64) can be solved numeri- 
cally, for example, by using Newton's method. 

6. CONCLUSIONS 

Starting from a correspondence between continuous and discrete vari- 
ables, we have proposed a simple model of discrete classical mechanics 
where the physical system evolution is governed by discrete Hamilton 
equations. Discrete gradients are defined in a proper manner, and thus the 
fundamental conservation laws remain valid. Different choices of the dis- 
crete gradient correspond to different discrete mechanical systems that have 
the same continuous limit. However, it is necessary that the various forms 
of discrete mechanics possess the symmetry properties of  continuous 
mechanics. Our choice leads to very simple equations of motion, as we have 
shown with some examples. 
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